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CONTACT INTERACTION WITH FRICTION OF TWO ELASTIC WEDGE-SHAPED BODIES 
OF DIFFERENT MATERIALS* 

L.A. KIPNIS and G.P. CHEREPANOV 

The plane static contact problem of elasticity theory concerning the 
impression of one wedge-shaped body into another of different material 
along sections of the side surfaces is examined. The abutting sections 
of both wedges start from the vertices. The problem is solved taking 
friction into account. In the case of greatest interest for applications, 
when the aperture angle of one of the wedges is II, an exact closed 
solution is constructed in the form of Cauchy-type integrals. However, 
the method of solution can be used for any wedge aperture angle. 

1. Formulation of the problem. We consider two elastic wedge-shaped bodies of 
different materials, one being impressed into the other along sections of the side surfaces. 
The contact sections in both wedges start from the vertices (Fig.1). Outside the line of 
contact the wedge faces are stress-free. It is assumed that the length of the line of contact 
is small compared with the characteristic dimensions of both bodies. 
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Applying the "microscope.principle" /l, 2/;we arrive at a singular boundary value problem 
whose boundary conditions have the form (Fig.21 

e = a, Ug = '5,@ = 0; e = --n, Ue = '5,a = 0 

e = 0, [eel = [T&l = 0, T,O = --kae 

8 = 0, P c z, 1~~1 = f b-j; 8 = 0, r > 1, ue = 0 

s ue (T, 0) dr = Y 
0 

r-t 00, v = (%, r,e. UT) = 0 (l/r) 

(1.1) 

(I.‘) 

(1.3) 

Here r,8 are polar coordinates, a@, %I? U, are stresses, ue,u, are displacements, [‘VI 
is the jump in the quantity N, k>O is the coefficient friction, f(r) is a given function, 

(--ky, y) is the given principal vector of the forces in the section O===O,O<r-=zl. 

The aperture angle of one of the wedges is taken equal to n since it is this case that 
is of greatest interest in connection with possible applications of the solution constructed 
below in engineering problems of material treatment and fracture (for instance, when cutting 
metals) . The problem under consideration can here be treated exactly as a problem on the 
motion of an elastic wedge with friction over the surface of a half-space from another elastic 
material. However, the method described later for the solution is suitable for any wedge 
aperture angle (and a and fi in Fig.1). 

Similar problems were examined in /3/. Their solutions were constructed in the form of 
infinite products. 

As r--O the solution of the problem under consideration behaves as the greatest sol- 
ution asymptotically satisfying the condition of continuity of the displacements at an angular 
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point for the canonical singular problem with boundary conditions 

e = a, 13~ = z,* = 0; 0 = --¶I, 08 = Tre = 0 

8 = 0, fsl = [T&f = 0, %fl = --kos, I%?1 = 0 

The solution mentioned for the canonical singular problem is constructed by the method of 
singular solutions /l, 21, and should be realized as the asymptotic form of the desired sol- 
ution of the initial problem as r+O. Therefore, the following asymptotic forms hold for 
the stresses near the angular point in the initial problem for O,< 0 < a,r+O 

Q * Co {D-sin (A + 2)O - (A + 2) sin Ml A+ - v 4 
k @ + 2) tcos ;1Ff - GOS (S + 2)01 A_ - 
2 fk (h + 2) sin he + h cos (3. + 2)81 6, + 
2 (h + 2) Ices he + k sin (h -j- 2)61 6-1 

Ge * co (h Ices he - cos (n + 2) 91 A+ - 
k Ih sin he - (h + 2) sin (h + 2) 01 A, - 
2h lsin (1 + 2)t) -k cos Ml 6, + 

2(~Sinh0-k((h3_2)cos(h~2)~]6~ 

u~~C~{~(~-2)sin~e-~sin(~+2)0]A+- 
k I(& + 2) CDS (h + 2) 6 - (k - 2) COS ke81 A_ + 

2 Ih cos (h+ 2) 0 + k (h - 2) sin Ml 6, - 
2 Ik (h + 2)sin (h + 2) 6 + (h - 2) cos I.01 6,) 

c 
c (2nr)" 

O= a?.sinnh ’ A* =sin2(h+I)a&(h-J- i)sin2a 

6, = sin% (h + 1) a rf: (A + i) sin% a 

The asymptotic forms for -n de,< O,r+O have a form analogous to (1.4) when AIt is 
replaced by cos a&, and 2&t by -sin nL and Co by 

2co8 
-Tiiiix’ 6=sin*(h+ l)a-((A-/- 1)*sin2a 

Here C is a real constant with the dimensions of a force, divided by the length to the 
power h +2, which is defined below from the solution constructed for the initial problem, 
li = h(a, k, E, Y,,v& is the single root of the characteristic equation 

A+ sin nh + 2En8 cos nh + 2k (h + 1) (h + 2) sin nh sin* a + 
4Uk6 sin nh = 0 

in the interval -i <"h < 0 (&,E:, and vlrvg are Yang's moduli and Poisson’s ratios of materials 
1 and 2) _ 

Fortbosevalues of a,k,E,v,,v, for which the equation has no roots in the interval 
mentioned, the stresses in the initial problem are bounded as r-+0. 

Values of the quantity (h + 1).10' are presented in the table for v1 = 0.250 and vI = 
0.333. The empty cells denote that the characteristic equation has no roots in the interval 
-l<h<O for corresponding value sof the parameters. 

The asymptotic form of the desired solution as r+ 1 is obtained from the preceding one 
for a = x if the subscripts 1 and 2 are interchanged. In particular, 

El "u* 

[ II w UT e& - (1 + En) R [2n (F - I)]-Y/” (r + I+ 0) (1.5) 

oe (r, 0) - (1 + En) Rq 12n (E - r)l-~“n (r -+ I - 0) 

R = 1,‘4 (xiv) li, v = arccos (-qku), q = 2 1(i +-En)* + 4k*Ual-'1~ 

Here K is a coefficient with the dimensions of force, divided by length to the power 
2 - y's and to be determined. 

If the length f of the line of contact is unknown (for a smooth function f(r)), then it 
is determined from the condition that the coefficient K equals zero. 

2. Solution of the Wiener-Hopf equation, Applying the Mellin integral transform 
to the equilibrium equations, the strain compatibility condition, Hooke's law, the "through" 
conditions (l.l), and taking account of the "dual" conditions (1.21, we arrive at the Wiener- 
Hopf functional equation for the problem under consideration 

cfr (P) = Ce (P) [Q+(P) -l-g (p)l f--h - 1 <Rep < 0) (2.1) 



748 

1 

El g (P) = - 4 (1 - VI‘) s f’ WI PP & 
0 0 

Go @) = -4d @) sin pnlA @), d (p) = sin2 pa - pz sin2 a 

A @) = (sin 2pa + p sin 2a) sin prc + 2End (p) cos pn - 
2kp (P - 1) sin pn sine a - 4Ukd @) sin px 

(In cases when the characteristic equation, presented in the preceding section, has no roots 
in the interval (-1,O). we obtain h = 0). 
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A! = 0.001 

304 
504 
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500 
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500 

kZ0.1 

813 g 496 . 

532 
532 423 

781 
558 
507 
500 

698 

E 
521 

% 

839 
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761 

E 
G32 
519 
495 
492 

593 504 
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422 423 

130’ 

596 
594 

E 
502 

% 

679 
464 
426 
422 

The functions Q-(p), @+ @) in (2.1) are analytic, respec ti 
._ _. 

.vely , in the half-planes 

Rep>--h-l, Rep<O. Using the asymptotic form Cl.>), we obtain by a theorem of Abelian 
type /4/ 

p + 00, W (p) N qZpviR1, CD+ (p) _ Z (-P)V’~-~ 

Z = R (1 + En) r (1 - yh) (2nZ)-v/n 

(2.2) 

512 
512 
511 

E 

E 

530 
529 
527 
511 

2% 
492 

% 
679 
561 
446 
425 
422 

(r(z) is the Gamma function). 
We rewrite (2.1) in the following form: 

' "" 's (D-(p)=- sin(prr+y) G (P) [Q+ !P) + g @)I (-- I- I< Re p<O) 

G(p) = 2 [(I -!- En) cos p’c - 2Uk sin pn] d (p)/4 (p) 

(2.3) 

The function ReG(it)(--Cp<t<m) is a positive even function of t that tends to unity 

as t+m, while the function Im G(it)(- m < t< 00) is an odd function of t that tends to 

z0ro as t+aJ. Therefore, the index of the function G(p) along the imaginary axis equals 
zero and the following factorization holds /5/: 

G(p)=++ (Rep=()) (2.4) 

We use the following representation 

P +y/rr sin pn (2.5) 
P sin(ps1. y) = KC (p) f?(p), 

The functions K- (P), KC (P) are analytic and have no zeros in the half-planes Rep> -1, 

Rep<1 -yin, respectively. Moreover, the following asymptotic forms hold: 

p -007 K+(P) _ (_p)-Vl”, K- (p) _ pVl” (2.6) 

Using the factorizations (2.4) and (2.5), and the representation 

K+ (p) G+ (p) 6 (p) = g+ (P) - B (P) We P = 0) 
(2.7) 

we write the functional equation (2.3) thus 
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(P -I- $4 [K’ w-' a- (P) G- (P) - qpIpB @) = 

-_ppx+ (PI @+ (PI G+ @I - qpg+ 04 (Re P = 0) 

(2.8) 

The functions on the left and right sides of (2.8) are analytic, respectively, in the 
half-planes Rep>O,Re p<O. By the principle of analytic continuation they equal the same 
function that is analytic in the whole p plane. It follows from (2.2), (2.41, (2.6), (2.7) 

that the functions on the left and right sides of (2.8) tend to the constant 

iw 

a=9(Z--Q 6=--Y& 5 K+(p)G+(p)g(p)cZp 
-km 

as p+m. By Liouville's theorem, a single analytic function is identically equal to this 
constant in the whole p plane 

Taking (1.3) into account, we find 

G_(O) Y 
a=m-T (2.9) 

The solution of the functional equation (2.1) has the form 

@" (P) = --IqpR+ (P) G’ (PH-’ Ia + qpc+ (P)I (Re P < 0) (2.10) 

@- (P) = (P + YW’ K- @) W @)I-’ la -I- qpf (p)l (Re p > 0) 

3. The coefficients Ii: and C. Formula for the contact stress. We find from 
the equation q(Z - S)= a, in which a is given by (2.9)) 

For a smooth function 
x=0 in this case, then 

K= 
8y (2np”-’ 

q(1 -CEts)r(l -y/n) 
(a -f- q8) w (3.1) 

f(r) we must determine the length 1 of the contact area. Since 
according to (2.9) and (3.1), 

1 G_(O) 1' 
=--nr(vix)T 

Using (2.1) and (2.10) we obtain the following formula for the contact stress (6 = O,O< 
rc I): 

0e=& 6d (z$’ pn I[qpK+ W G+ (P)I-~ >: [a + qpg” (P)I - g (~1) (+-)-“’ dp (3.2) 

Using 13.21 and the formula for the stress near the point Opresented in Sect.1, we find 
the coefficient C characterizing the behaviour of the stress at an angular point 

C= 8ksWnX 
X P(~'l)e+(-k---_)--a 

(Z#A'(-I-- I) q(h. f l)K+(- A - 1) (;+(_ L _ 1) - g (- h 
-1)j I-h 

(A'(p) is the derivative of the function A(p) with respect to p). 
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